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Abstract

This work revisits the generalized 2D problem of electrically permeable collinear interface cracks in piezoelectric
materials with two motivations: one is to present a more explicit approach to the considered problem; the other is to
derive some new results for periodical interface crack problem in piezoelectric materials with the use of the new ap-
proach. Based on the Stroh formalism, the mechanical-electric coupling boundary equations are decoupled into two
equations: the first one is related only to the applied mechanical loads, and the second one only to the applied electric
field. According to the traditional method or available results, the solution for the first equation can be given, and then
the solution for the second equation can be directly written out by using the results of the first equation. Furthermore,
the solutions for infinite number of periodical collinear interface cracks are at the first time presented in closed form. The
solutions include the field intensity factors and the electric fields both inside and outside the cracks. It is shown that
under the electric loading only, the electric fields are uniform not only in the materials but also inside the cracks, while
the stress is zero wherever. However, when the combined mechanical-electric loadings are applied at infinity, the electric
fields inside the cracks may be singular and oscillatory, and such is the case for the stresses near the crack tips, but the
intensities of all singularities depend on the material properties and the applied mechanical loads, not on the applied
electric loads. Finally, a numerical example is given for the case of a single interface crack, and the electric fields inside
the crack is shown analytically and graphically.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Fracture mechanics of piezoelectric materials has received considerable interest in the recent decade. A
lengthy literature has been presented in recent review papers (McMeeking, 1999; Kamlah, 2001; Zhang
et al., 2002; and Zhang and Gao, 2003). It can be found that the interface crack problems in piezoelectric
media have been well studied. Main contributions to the generalized two-dimensional problem of interface
cracks between two dissimilar piezoelectric half-spaces include the works of Kuo and Barnett (1991), Suo
et al. (1992), Liang and Hwu (1996), Beom and Atluri (1996), Qin and Mai (1999), Ma and Chen (2001),
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Herrmann et al. (2001), Herrmann and Loboda (2003a,b) for an impermeable crack; Govorukha and
Loboda (2000), Ru (2000) and Beom and Atluri (2002) for a conducting crack; and also Wang and Han
(1999), Gao and Wang (2000), Herrmann and Loboda (2000, 2003a,b), and Liu and Hsia (2003) for a
permeable crack. Recently, Wang and Shen (2002) give a general treatment on various interface defects at
anisotropic piezoelectric bimaterial interface.

However, to the authors’ knowledge, no solutions are presented for the case of periodic interfacial cracks
in two dissimilar piezoelectric materials, though the similar problem has been solved for the case of a
homogeneous piezoelectric medium (Gao and Wang, 1999; Hao, 2001). This work revisits the generalized
two-dimensional problem of interfacial cracks in piezoelectric materials with two motivations: one is to
develop a more concise and explicit approach to the general collinear cracks, with which one can reduce a
piezoelectric interface crack problem to an equivalent one to that in purely elastic anisotropic media; the
other is to derive the solution for infinite number of periodical collinear interface cracks. Since a crack in
piezoelectric solids behaves more like a permeable slit within the scope of linear elasticity (Shindo et al.,
2002), the permeable crack model is used in the present work, and special attention is played to the
examination of the electric fields within the crack.

Below is the plan of this work: following the brief introduction, Section 2 outlines the Stroh formalism.
In Section 3 the general solutions for N collinear permeable interface cracks are derived. Furthermore, the
solutions for infinite number of collinear periodic cracks are presented in Section 4. As a special example,
analytical solutions and numerical results are given for a single interface crack, and especially the electric
field inside the crack is calculated and shown graphically in Section 5. Finally, Section 6 concludes the
work.

2. Basic equations

In a rectangular coordinate system x; (i = 1,2, 3), the basic equations for a linear piezoelectric solid are
(Barnett and Lothe, 1975)

0;;=0, D=0, W
1

Y =3 (uij +ui), Ei=—o, 2

0ij = CijtVi — exijBrs  Di = ewyy; + enby, 2

where u;, ¢, 0y, 7,5, D; and E; are the displacement, the electric potential, the stress, the strain, the electric
displacement and the electric field, respectively, and ¢, e;x and ¢; stand for the elastic constants, the
piezoelectric constants and the dielectric constants, respectively.

Consider a generalized two-dimensional problem in which all the field variables are independent of x;.
We introduce a generalized displacement vector u as (Barnett and Lothe, 1975)

u=[u,uz,us, 0] = af(x + pra), (4)

where the superscript “T” represents the transpose, f(x; + px;) is an analytic function, p is a complex
number, and a a constant four-element column vector. Eqs. (1)—(3) can be satisfied by (4) for arbitrary
f(x1 + pxy) if

W+ p(R +R") 4 p*Tla = 0, (5)
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where the matrices Q, R and T are given by

W — |:Cilk] €1li } R = |:Ci1k2 €21i ]7 T= |:Ci2k2 €22 ]7 i,k: 17273' (6)
1

elTli —& €1T2i —&12 egzl. —&»
The condition for non-trivial solutions of (5) requires
W+ p(R+R") + p*T| = 0. (7)

It can be shown that Eq. (7) has eight roots p, and p, (o« = 1,2, 3,4) where p, cannot be real because of the
positive definiteness of the strain energy and electric energy densities. It is convenient to calculate p, by
solving the following standard eigen-equation:

N{ = p(,

where

N; N a
(8 M) =)

N, =-T'R", N,=T'=N], N;3=RT'R"-W=Nj.

The general solution of Egs. (1)-(3) can be expressed as

u=Af(z) + Af(z), (8)
¢ = Bf(z) + Bf(z), 9)
where

A = (31,32,33734), B - (bl;b27b37b4)7

f(zfx) = [fl (Zl)7f2(22)7fi3(z3)’f4(z4)]T7 Zy =X + PuX2

and ¢ is the generalized stress function such that

6y =[02,D)]' =, ©1=01;,D1]' =6, (10)
In addition, the A and B have the following nature (Ting, 1996)

B" AT][A A] [I O

{ET XTHB E} - {0 1]’ (1)

where I is a 4 x4 unit matrix.

3. Solution of finite collinear cracks

Consider finite number of collinear cracks /, between two half-infinite piezoelectric planes s; and s, as
shown in Fig. 1. The union of the cracks and uncracked part in the x;-axis are denoted by L. and Ly, re-
spectively. Assume that these two half-planes coexist in the state of generalized two-dimensional defor-
mation under piecewise uniform loads at infinity (Gao and Wang, 2000). Additionally, the cracks are
assumed to be traction-free, and electrically permeable slits. In this case the boundary conditions can be
expressed as (Parton, 1976)

g;j:o';j:(l Dy =D;, Ef=E;, onlL, (12)
u;r :u;7 D;’ =D, ET =E, onlL,. (13)
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Fig. 1. N collinear interface cracks in piezoelectric bimaterials.
From (8) and (9) one has
u; = AF(2) + AF(2), (14)
¢, = BF(z) +BF(z), (15)

where F(z) = df /dz.
For the present problem, F(z) has the form of
Fi(2) =cy +Fu(z), k=12, (16)
where ¢° is a constant vector; Fy(z) is a unknown function vector in s; (k=1) or in s, (k =2), and
Fko(OO) =0.
First let us determine ¢;°. It is obvious that ¢;° is the complex potential corresponding to two completely

bonded half-planes subjected to the applied uniform loads at infinity. For the subproblem, the continuous

conditions of deformation and stress on the entire x;-axis, from (12) and (13), require
Al + AT = Ayel + Ay =T, (17
BlC‘]QO + Elé?C = Bzcgo —+ Ezé;o = (1)310,

where
00 0o 00 00 01T 00 00 0 00 1T
¢ = [031,05,05, D], u, = Uy, Uy 15Uz s ”4,1]
in which ¢7 is the given loading at infinity, u is related to the generalized strain at infinity, and it can be
expressed by the generalized stress at infinity from using the constitutive equations.
Noting (11), one has from (17) that

¢ =BluY +A¢T, (k=1,2). (18)
The remainder task is to find Fy(z) in (16). Using (12) and (13) one has

¢i(x)) = ¢i(x7), —oo<x < oo. (19)
Substituting (15) together with (16) into (19), and then using (17) results in

BiFio(x]) + BiFip(x;) = BoFa(x]) + BoFyo(x]), —00 <x < oo. (20)

From (20) one obtains (Muskhelishvili, 1975)
B\F(z) — ?2?0(2) =0, zes, 1)
B,Fy(z) — BiFjo(z) =0, zé€s,.
Introduce a jump function

iAuy = ifu, () — uy (7). (22)
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Using (14), (16), (17) and (21), Eq. (22) can be reduced to

iAu; = K" (x;) — K (xy), (23)
where

Ko = { ) Zel o

H=Y +Y,, Y.=iAB,"
Using the third equations of (12) and (13) we have from (23) that

K/ (x1) — K, (x1) =0, —o00<x <oo0. (25)
Noting K(co) = 0 from (24), the solution of (25) is (Muskhelishvili, 1975)

Ky(z) = 0. (26)
On the other hand, substituting (16) into (15) results in

¢, =7 +BiFio(x1) + BiFip(xy). (27)
Using (21), (27) becomes

b = &7 + BiFio(x1) + BaFa(xy). (28)
Considering (24), one can rewrite (28) as

) = 6% + AK' (1)) + AK (1)), (29)
where

A et &

in which A, is a 3x3 upper left-hand block; Ay is a real element; A;,; and A;,; are a row and column
vector, respectively. It can be shown that A, is positive definite (Suo et al., 1992).
Taking the first three rows and the fourth row of (29), respectively, and then using (26) yields

6:(x1) = 65 + AK] (x1) + AK; (x1), (31)
Ds(x1) = DY + AraKy (x1) + Ak (v), (32)
where

Ks = K1, K2, K3]', 65 =05, 055, 0%) .
Eq. (32) can be rewritten as

Da(x1) = D¥ + [Arad, AKS (1) + [Aralk, TAK; (). (33)
On the crack faces, 6, = 0, and thus (31) gives

AKT (x1) + AKS (x)) = 63, x; € L, (34)
that is

AKS (x1) = =6 — AK{ (x1), xi € Le. (35)
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Substituting (35) into (33) yields the electric displacement on crack surface as
—  —1 _ - -1
D)(x1) = D — [A1aA, 165 + [AraA, ' — ALsA, JAKT (x), x € L. (36)

Up to here one finds that the mechanical-electrical boundary condition (29) is decoupled into two equa-
tions: one is (33) and the other is (34). Eq. (34) is related only to the applied mechanical load ¢5°. This
means that our problem has been reduced to an equivalent interface crack problem to that in purely elastic
anisotropic media, and thus the solution of K;3(z) can be obtained from (34) in terms of well-established
method. Once Kj(z) is available, all mechanical and electric variables can be determined. It should be noted
that the complete solution of Kj;(z) needs the use of the single-valued condition of displacements such as

/ AUJ dxl =0. (37)
L
Substituting (23) into (37), and using (26) leads to
[ K0 — K ) = (38)
Lc

It can found from (34) and (38) that K;(z) is not related to the applied electric loading. Thus, we here can
conclude that the uniform electric loading at infinity has no influence on the fracture of an infinite piezo-
electric solid with mathematical interface cracks.

When H is real, A is real too. Then, (34) and (36) become

[AK3 ()] + [AK3(x1)]” = —63°, (39)

Dg(xl) = D;o — A1X3A;10'§C. (40)

The general solution of (39) can be easily written out. It can be shown that all fields behave the reverse
square root singularities, and the stress intensity factor vector k, is the same as that of isotropic materials,
while the intensity factor of electric displacement is kp = A1X3A;1k{,. In addition, the electric field inside any
crack is a constant, as shown in (40).

When H is complex and the electric loading is applied solely, we have from (34) that K;(z) = 0. With it,
Eq. (36) leads to D) = D¥. This indicates that the stress is zero everywhere. The electric fields in the ma-
terials are equal to the applied ones, while inside the cracks one has EY = DY /¢y = E5°(¢m/ &), where &, and
& are the dielectric constants of the material and air, respectively. For most piezoelectric materials, &y, /& is
about 1000 and thus the electric field inside the cracks is about 1000 times higher than the applied electric
field.

When H is complex but the combined mechanical-electric loadings are applied at infinity, K;(z) has to be
determined from (34). Upon obtaining Kj(z), the electric field £ = DY /¢, inside the cracks can be given
from (36). It is shown from (36) that £ may be singular and oscillatory near the tip of cracks, since A, X3A;1
is not real in general. Below we place our stress on this general case.

For this case, let

Q'AAQ = ((—e7™)), (41)
where (()) indicates the diagonal matrix in which each component is varied according to the Greek index o,

Q is the eigenvector matrix and J, is a complex number:

- 1.
61:—54“181.

The ¢, can be determined by (Ting, 1996)
|| _ 6727[1(311 _ A;IXJH _ 07
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that is

A, — ™A, | =0,
which has the solution in the form of (Ting, 1996)

& = (&,—¢,0), (42)
where

1

1 oqr B
+F 0<ﬁ:[—§tr(5)2} , S=D'W, D—iW=1,.

1-8’
Using (41), (34) can be decoupled and the general solution of K;(z) can be obtained. Omitting some details
we directly give the final result as

1
——tan”ﬂ——l +—F

1 7X“(Z)X1_I(OO) —14A-1_ XQ‘(Z)
K3(Z) = _Q<< 1+ o2y Q Ao’ 0, + 1 +ez7'[81 PN*I(Z)7 (43)
where
Py_i(z) = ey_i2' ' 4 e, (44)
N . .
Xx(Z) _ H(Z . an)71/271€“(2 _ bn)*1/2+18x, (45)
n=1
N
_ H {Z (a, + b,) + 2ig,(a, — b,) . (46)
n=1 2
The coefficients ¢, involved in (44) can be determined by (38).
The stress intensity factor vector can be defined as (Wu, 1990)
k, = lim v2mrA,Q)((r ) [A, Q] 3 (n), (47)

where r means the distance from the crack tip; ¢3(x;) stands for the singular principle part of generalized
stress vector 6, (x;) ahead of the crack tip.
Ahead of the crack tips, it can be shown that

[AQ] (1) = (X (x1)X, " (00)))[AQ] 05 + (X, (x1))) Py (1), x1 € Ly (48)
Inserting (48) into (47) results in the general expression of stress intensity factors as
Ko = lim V2R { A Q) (D)X, )X, (00))) [AQ) 5+ (X (1)) Py () (49)

It is found from (42) and (49) that the structure of singular fields near the crack tip in a piezoelectric
bimaterial system is the same as that in a traditional anisotropic bimaterials. However, this point was
overlooked in an earlier work (Gao and Wang, 2000).

4. Solution of infinite collinear periodic cracks

For the case of infinite number of collinear periodical interface cracks with equal length 2a, as shown in
Fig. 2, the location of crack tips is specified by
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X2 63, D3
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0
—a +a X,
2b P 2b P 2b

Fig. 2. Periodic interfacial cracks in piezoelectric bimaterials.

a,=2nb—a, b,=2nb+a (n=-00,...,0,...,400).
Inserting (50) and (45) into (46) results in

+00 ‘ ‘
X,(z) = H [(z —2nb) + a]fl/sz“[(z — 2nb) — a]71/2+m’
+00
X;l(OO) = H [z — 2nb + 2iae,], Py_i(z) =0.

Using the identity

00 l2
sinmt = ntH (1 _ﬁ>’
n=1

it can be shown that (Boniface and Banks-Sills, 2002)

- [ n(z+2iae,) n(z—a) e
n ] o [2]
X_I(OO)XM(Z) _ 2b [ 2b .

e ot

2b

Note

sin m(z £ a) s1n cos icos s1n
2b 2b 2b 2b 2b

Then, one can rewrite (53) as

Sln [ﬂb (Z + 2ia€1)] SCCM SeC’ZLIZ7 |: g gna:| ey

g2 nz g2 na g + tg

Substituting (51) and (52) into (43) can give the complex potential as

ki) - o (2 o e

1 + eZnsx

Correspondingly, the stress intensity factor is

k, = v1a[A,Q](((2a) " ,))[A,Q] 65,

(53)
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where

W, — secna sin a (1 + 2ie )} (na)isfl/z (t na)—isfl/z
2 L2b )|\ 28 &35 .

5. Numerical example: for the case of a single crack

As an example, consider a crack located in [—a, +a], as shown in Fig. 3. In this case, we have

1 z—a\™ B :
X0 = (250) X0 =24 2, Pote) =0,

The complex potential can be determined from (43) such that

Ko(2) = _Q<< 1 — X,(2)(z + 2iaz,) >>Q_1A;10§O_

1 + eZnsq

Substituting (58) into (49) yields the stress intensity factor vector as

k, = v/ma[A,Q(((2a) " (1 + 2ie,)))[A,Q] 65"
On the other hand, if b — oo in (57), one has

W, =1 x ’;—Z(l + 2isa)(g—2)_l/2(;‘—2’)_l/z,

=1+ 2ig,.

Inserting (61) into (56) one can reach (60) again.
To obtain the crack opening Au™(x;), we have from (23) and (25) that

Au™(x;) = K7 (x1) — K5 (x1),

and then inserting (59) into (62) and using X, = —e >™2X_" on crack faces, we obtain

AU (x)) = Q((e_Z“S“X;(xl)(xl + 2iasa)>>Q71Aglc§°, —a<x <a,

o, ,Dy T A T
XA
lO
|
» » Y

Fig. 3. An interfacial crack in piezoelectric bimaterials.
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namely

Au'(x;) = Im [Q((e_z"‘g“X;(xl)(xl + 2iasa)))Q71A;1]6§°, —a<x <a. (64)
Taking the integration of (64) with respect to x; and noting Au™(a) = 0, one can obtain (Ting, 1996)

Au™(x;) = Im[Q((e ™))yt (x))Q ' 4, ]6¥, —a<x <a, (65)
where

1 () =iy/a? — xle™e™* | X =In 2 I_Z , —a<x <a.

Eq. (65) can be further reduced to

A" (x)) = y/a® — XIRe[Q((e™)) ((e ™ ))Q ' 1 ']6F, —a<x <a. (66)

which shows that the displacement is oscillatory near the crack tip.
On the other hand, substituting (59) into (36) results in the expression of the electric displacement inside
the crack as

Di(x1) = D5° + D3, (x1), (67)

where DY, (x;) is the electric displacement induced by the applied mechanical loading, and it is a function of
position along the crack line such that

. = — 1 1=
DY, (n) = —[AisA, Jo5 — [AA,! = AuA, ]Q<<m>>Q ‘Ao

_ — — X+ +21 ol — — o0
+ [A13A¢71 - A13A01]Q<< : (XII):)»CIQZMG( = )>>Q IAJIGZ : (68)

It can be found from (67) and (68) that the applied electric loading induces a constant electric field inside
the crack, while the applied mechanical loading produces a singular and oscillatory electric field near the
crack tip. This means that the singularity of electric fields near the crack tip is only characterized by the
applied mechanical loading.

In general, the material constants involved in (3) have the orders in magnitude as follows:

Cijkl = cg’kl X 1010 N/m27 €rij = egij X 100 C/mz, 8” = S?j X 10710 (:/\]1'117 (69)

where ¢, e}, and &), are dimensionless constants which are about the same in order of magnitude.
Substituting (69) into (3) gives

i = Chyvu X 101 N/m? — ¢p B x 10° C/m?, Dy = ey, x 10° C/m? 4 ¢ E; x 1071 C/Vm  (70)
Let
po % 1010 =40, By x 10° C/m? = B0 N/m?, g = o N/m?, Dy =D x 10710 C/n?, (71)

Then, (70) becomes

0

_ 0 ,0 _ 0 0 o_ 0 .0 0 70
0 = CiVir — €, Dy = €y + ey (72)

In the following numerical calculation, we consider a transversely isotropic piezoelectric material with the
poling direction being parallel to the x,-axis. In this case, according to the constitutive question (72), the
elements in the three matrices in (6) can be inputted by ¢ e?j and e?j, respectively (here we used Voigt’s

ij°
notation), and moreover these matrixes can be explicitly expressed as
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<)) 2 0 (3 0 ) 0 € ¢, 0 0 0

0 ¢ 0 e 0 0 0 0 & 0 9

0 _ 44 15 0 Caa 0 _ C33 €33
W= 0 0 9= o |’ R=19 00 ol T=]0 0 & o (73)

2 0 0 . 0

0 el 0 —&, es 0 0 0 0 e 0 —e5

Based on (73), one can obtain highly exact numerical results, since the elements involved in these matrices
have about the same orders of magnitude. However, it should be noted that the obtained strain (or dis-
placement) and electric displacement are y° and D°, while the physical y and D are given by the replacements
of (71).

Below we use the piezoelectric ceramics PZT-4 (located on the upper half-space) and PZT-5H (located
on the lower upper half-space) as the model materials for our numerical calculation. The uniform far-fields
6%° and DY are applied. The properties of PZT-4 are

&, =13.90, ,=778, =774,
5, =11.30, ¢, =2.56,
e, =—6.98, &), =13.84, &' =13.44,
&), = 60.00, &), =54.70

and the properties of PZT-5H are
), =12.60, ¢, =550, c;3=>530,
e, =11.70, ¢, =3.53,
e, = —6.50, €}, =23.30, e)5=17.00,
&), = 151.00, &}, = 130.00.

Using commercial software Matlab, we have from (68) that
0.293

V1=x2

DY, (x1) = —2.446%° + Im [(x, + 2ie)m(x.)]0%, (74)

where

1 — 3 ie
x*:%, (Jx1| < a), &=~0.02, w(x*):<l+;>.

For the special case of a homogeneous material (PZT-4), the electric field inside the crack is described by
DY = DY —2.26400F. (75)

The variation of the electric displacement Dj_(x;) along the crack line is plotted in Fig. 4 where the data
points are taken within a range x;/a =0,...,0.999. In the range, no oscillatory behaviour is visible. As
indicated by the analytical result (68), the electric field £ = D /e, induced by the applied mechanical
loading inside the crack is singular near the tip of an interface crack. However, for a crack in a homo-
geneous material, Eq. (75) shows that EY is a constant. In general, the electric field inside the crack consists
of two parts: one is EY, induced by the applied electric field, and the other E9, induced by the applied
mechanical loading. Since the sign of EY is opposite to that of EY,, the sum electric field is equal to
E) = E), — EY_. This means that a proper ratio of the applied electric loading to the applied mechanical
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Fig. 4. The electric displacement induced by the mechanical load ¢%5°.

loading may lead to a zero electric field inside the crack. For a homogeneous material with a crack, we can
show that the ratio is
DY Hp

Dy _ , 76
=i (76)

In fact, (76) gives the loading condition under which the commonly used impermeable crack model is valid.

6. Conclusions

This work considers the problem of permeable interface cracks in piezoelectric bimaterials based on the
Stroh formalism. The considered problem is reduced into an equivalent interface crack problem in purely
elastic anisotropic media. This makes it easy to extend the available results concerning interface cracks in
traditional anisotropic materials to the corresponding cases of piezoelectric media. The solution of periodic
collinear crack is at the first time derived in explicit and closed form. It is found that the electric field inside
the cracks is very complex and in general singular near the crack tip. Under such high local electric field, it
is believed that partial discharge may occur, accompanying with the formation of initiation electrical tree
channels (Dissado and Fothergill, 1992). This process may lead partial material near the crack tip to be
electrically broken down (Zhang and Gao, 2003), and therefore the electrical non-linearity will dominate to
the fracture behaviour of piezoelectric materials. Thus, it is necessary to develop an electrical non-linearity
model for the simulation of interface fracture of piezoelectric materials. This is left to future work.
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