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Periodic permeable interface cracks in piezoelectric materials
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Abstract

This work revisits the generalized 2D problem of electrically permeable collinear interface cracks in piezoelectric

materials with two motivations: one is to present a more explicit approach to the considered problem; the other is to

derive some new results for periodical interface crack problem in piezoelectric materials with the use of the new ap-

proach. Based on the Stroh formalism, the mechanical–electric coupling boundary equations are decoupled into two

equations: the first one is related only to the applied mechanical loads, and the second one only to the applied electric

field. According to the traditional method or available results, the solution for the first equation can be given, and then

the solution for the second equation can be directly written out by using the results of the first equation. Furthermore,

the solutions for infinite number of periodical collinear interface cracks are at the first time presented in closed form. The

solutions include the field intensity factors and the electric fields both inside and outside the cracks. It is shown that

under the electric loading only, the electric fields are uniform not only in the materials but also inside the cracks, while

the stress is zero wherever. However, when the combined mechanical–electric loadings are applied at infinity, the electric

fields inside the cracks may be singular and oscillatory, and such is the case for the stresses near the crack tips, but the

intensities of all singularities depend on the material properties and the applied mechanical loads, not on the applied

electric loads. Finally, a numerical example is given for the case of a single interface crack, and the electric fields inside

the crack is shown analytically and graphically.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Fracture mechanics of piezoelectric materials has received considerable interest in the recent decade. A
lengthy literature has been presented in recent review papers (McMeeking, 1999; Kamlah, 2001; Zhang

et al., 2002; and Zhang and Gao, 2003). It can be found that the interface crack problems in piezoelectric

media have been well studied. Main contributions to the generalized two-dimensional problem of interface

cracks between two dissimilar piezoelectric half-spaces include the works of Kuo and Barnett (1991), Suo

et al. (1992), Liang and Hwu (1996), Beom and Atluri (1996), Qin and Mai (1999), Ma and Chen (2001),
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Herrmann et al. (2001), Herrmann and Loboda (2003a,b) for an impermeable crack; Govorukha and

Loboda (2000), Ru (2000) and Beom and Atluri (2002) for a conducting crack; and also Wang and Han

(1999), Gao and Wang (2000), Herrmann and Loboda (2000, 2003a,b), and Liu and Hsia (2003) for a

permeable crack. Recently, Wang and Shen (2002) give a general treatment on various interface defects at
anisotropic piezoelectric bimaterial interface.

However, to the authors� knowledge, no solutions are presented for the case of periodic interfacial cracks

in two dissimilar piezoelectric materials, though the similar problem has been solved for the case of a

homogeneous piezoelectric medium (Gao and Wang, 1999; Hao, 2001). This work revisits the generalized

two-dimensional problem of interfacial cracks in piezoelectric materials with two motivations: one is to

develop a more concise and explicit approach to the general collinear cracks, with which one can reduce a

piezoelectric interface crack problem to an equivalent one to that in purely elastic anisotropic media; the

other is to derive the solution for infinite number of periodical collinear interface cracks. Since a crack in
piezoelectric solids behaves more like a permeable slit within the scope of linear elasticity (Shindo et al.,

2002), the permeable crack model is used in the present work, and special attention is played to the

examination of the electric fields within the crack.

Below is the plan of this work: following the brief introduction, Section 2 outlines the Stroh formalism.

In Section 3 the general solutions for N collinear permeable interface cracks are derived. Furthermore, the

solutions for infinite number of collinear periodic cracks are presented in Section 4. As a special example,

analytical solutions and numerical results are given for a single interface crack, and especially the electric

field inside the crack is calculated and shown graphically in Section 5. Finally, Section 6 concludes the
work.
2. Basic equations

In a rectangular coordinate system xi ði ¼ 1; 2; 3Þ, the basic equations for a linear piezoelectric solid are

(Barnett and Lothe, 1975)
rij:j ¼ 0; Di;i ¼ 0; ð1Þ

cij ¼
1

2
ðui;j þ uj;iÞ; Ei ¼ �u;i; ð2Þ

rij ¼ cijklckl � ekijEk; Dk ¼ ekijcij þ eklEl; ð3Þ
where ui, u, rij, cij, Dj and Ei are the displacement, the electric potential, the stress, the strain, the electric

displacement and the electric field, respectively, and cijkl, eijk and eij stand for the elastic constants, the

piezoelectric constants and the dielectric constants, respectively.

Consider a generalized two-dimensional problem in which all the field variables are independent of x3.
We introduce a generalized displacement vector u as (Barnett and Lothe, 1975)
u ¼ ½u1; u2; u3;u�T ¼ af ðx1 þ px2Þ; ð4Þ
where the superscript �T� represents the transpose, f ðx1 þ px2Þ is an analytic function, p is a complex

number, and a a constant four-element column vector. Eqs. (1)–(3) can be satisfied by (4) for arbitrary

f ðx1 þ px2Þ if
½Wþ pðRþ RTÞ þ p2T�a ¼ 0; ð5Þ
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where the matrices Q, R and T are given by
W ¼ ci1k1 e11i
eT11i �e11

� �
; R ¼ ci1k2 e21i

eT12i �e12

� �
; T ¼ ci2k2 e22i

eT22i �e22

� �
; i; k ¼ 1; 2; 3: ð6Þ
The condition for non-trivial solutions of (5) requires
jWþ pðRþ RTÞ þ p2Tj ¼ 0: ð7Þ

It can be shown that Eq. (7) has eight roots pa and �ppa ða ¼ 1; 2; 3; 4Þ where pa cannot be real because of the

positive definiteness of the strain energy and electric energy densities. It is convenient to calculate pa by
solving the following standard eigen-equation:
Nf ¼ pf;
where
N ¼ N1 N2

N3 NT
1

� �
; f ¼ a

b

� �
;

N1 ¼ �T�1RT; N2 ¼ T�1 ¼ NT
2 ; N3 ¼ RT�1RT �W ¼ NT

3 :
The general solution of Eqs. (1)–(3) can be expressed as
u ¼ AfðzÞ þ AfðzÞ; ð8Þ

/ ¼ BfðzÞ þ BfðzÞ; ð9Þ

where
A ¼ ða1; a2; a3; a4Þ; B ¼ ðb1; b2; b3; b4Þ;

fðzaÞ ¼ ½f1ðz1Þ; f2ðz2Þ; f3ðz3Þ; f4ðz4Þ�T; za ¼ x1 þ pax2
and / is the generalized stress function such that
r2 ¼ ½r2j;D2�T ¼ /;1; r1 ¼ ½r1j;D1�T ¼ �/;2: ð10Þ

In addition, the A and B have the following nature (Ting, 1996)
BT AT

B
T

A
T

� �
A A
B B

� �
¼ I 0

0 I

� �
; ð11Þ
where I is a 4 · 4 unit matrix.
3. Solution of finite collinear cracks

Consider finite number of collinear cracks ln between two half-infinite piezoelectric planes s1 and s2, as
shown in Fig. 1. The union of the cracks and uncracked part in the x1-axis are denoted by Lc and Lb, re-

spectively. Assume that these two half-planes coexist in the state of generalized two-dimensional defor-

mation under piecewise uniform loads at infinity (Gao and Wang, 2000). Additionally, the cracks are

assumed to be traction-free, and electrically permeable slits. In this case the boundary conditions can be

expressed as (Parton, 1976)
rþ
2j ¼ r�

2j ¼ 0; Dþ
2 ¼ D�

2 ; Eþ
1 ¼ E�

1 ; on Lc; ð12Þ

uþj ¼ u�j ; Dþ
2 ¼ D�

2 ; Eþ
1 ¼ E�

1 ; on Lb: ð13Þ



Fig. 1. N collinear interface cracks in piezoelectric bimaterials.
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From (8) and (9) one has
u;1 ¼ AFðzÞ þ AFðzÞ; ð14Þ

/;1 ¼ BFðzÞ þ BFðzÞ; ð15Þ
where FðzÞ ¼ df=dz.
For the present problem, FðzÞ has the form of
FkðzÞ ¼ c1k þ Fk0ðzÞ; k ¼ 1; 2; ð16Þ

where c1k is a constant vector; Fk0ðzÞ is a unknown function vector in s1 ðk ¼ 1Þ or in s2 ðk ¼ 2Þ, and
Fk0ð1Þ ¼ 0.

First let us determine c1k . It is obvious that c
1
k is the complex potential corresponding to two completely

bonded half-planes subjected to the applied uniform loads at infinity. For the subproblem, the continuous

conditions of deformation and stress on the entire x1-axis, from (12) and (13), require
A1c
1
1 þ A1�cc

1
1 ¼ A2c

1
2 þ A2�cc

1
2 ¼ u1;1 ;

B1c
1
1 þ B1�cc

1
1 ¼ B2c

1
2 þ B2�cc

1
2 ¼ /1

;1 ;
ð17Þ
where
/1
;1 ¼ ½r1

21; r
1
22; r

1
23;D

1
2 �

T
; u1;1 ¼ ½u11;1; u12;1; u13;1; u14;1�

T

in which /1
;1 is the given loading at infinity, u1;1 is related to the generalized strain at infinity, and it can be

expressed by the generalized stress at infinity from using the constitutive equations.
Noting (11), one has from (17) that
c1k ¼ BT
k u

1
;1 þ AT

k /
1
;1 ; ðk ¼ 1; 2Þ: ð18Þ
The remainder task is to find Fk0ðzÞ in (16). Using (12) and (13) one has
/;1ðxþ1 Þ ¼ /;1ðx�1 Þ; �1 < x1 < 1: ð19Þ
Substituting (15) together with (16) into (19), and then using (17) results in
B1F10ðxþ1 Þ þ B1F10ðx�1 Þ ¼ B2F20ðx�1 Þ þ B2F20ðxþ1 Þ; �1 < x1 < 1: ð20Þ

From (20) one obtains (Muskhelishvili, 1975)
B1F10ðzÞ � B2F20ðzÞ ¼ 0; z 2 s1;

B2F20ðzÞ � B1F10ðzÞ ¼ 0; z 2 s2:
ð21Þ
Introduce a jump function
iDu;1 ¼ i½u;1ðxþ1 Þ � u;1ðx�1 Þ�: ð22Þ
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Using (14), (16), (17) and (21), Eq. (22) can be reduced to
iDu;1 ¼ Kþðx1Þ � K�ðx1Þ; ð23Þ

where
KðzÞ ¼ HB1F10ðzÞ; z 2 s1;
HB2F20ðzÞ; z 2 s2;

�
ð24Þ

H ¼ Y1 þ Y2; Yk ¼ iAkB
�1
k :
Using the third equations of (12) and (13) we have from (23) that
Kþ
4 ðx1Þ � K�

4 ðx1Þ ¼ 0; �1 < x1 < 1: ð25Þ

Noting Kð1Þ ¼ 0 from (24), the solution of (25) is (Muskhelishvili, 1975)
K4ðzÞ ¼ 0: ð26Þ

On the other hand, substituting (16) into (15) results in
/;1 ¼ /1
;1 þ B1F10ðx1Þ þ B1F10ðx1Þ: ð27Þ
Using (21), (27) becomes
/;1 ¼ /1
;1 þ B1F10ðx1Þ þ B2F20ðx1Þ: ð28Þ
Considering (24), one can rewrite (28) as
/;1 ¼ /1
;1 þ KKþðx1Þ þ KK�ðx1Þ; ð29Þ
where
K ¼ H�1 ¼ Kr K3�1;
K1�3 K44

� �
; ð30Þ
in which Kr is a 3· 3 upper left-hand block; K44 is a real element; K1�3 and K3�1 are a row and column

vector, respectively. It can be shown that Kr is positive definite (Suo et al., 1992).

Taking the first three rows and the fourth row of (29), respectively, and then using (26) yields
r2ðx1Þ ¼ r1
2 þ KrK

þ
3 ðx1Þ þ KrK

�
3 ðx1Þ; ð31Þ

D2ðx1Þ ¼ D1
2 þ K1�3K

þ
3 ðx1Þ þ K1�3K

�
3 ðx1Þ; ð32Þ
where
K3 ¼ ½K1;K2;K3�T; r1
2 ¼ ½r1

21; r
1
22; r

1
23�

T
:

Eq. (32) can be rewritten as
D2ðx1Þ ¼ D1
2 þ ½K1�3K

�1
r �KrK

þ
3 ðx1Þ þ ½K1�3K

�1

r �KrK
�
3 ðx1Þ: ð33Þ
On the crack faces, r2 ¼ 0, and thus (31) gives
KrK
þ
3 ðx1Þ þ KrK

�
3 ðx1Þ ¼ �r1

2 ; x1 2 Lc; ð34Þ
that is
KrK
�
3 ðx1Þ ¼ �r1

2 � KrK
þ
3 ðx1Þ; x1 2 Lc: ð35Þ
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Substituting (35) into (33) yields the electric displacement on crack surface as
D0
2ðx1Þ ¼ D1

2 � ½K1�3K
�1

r �r1
2 þ ½K1�3K

�1
r � K1�3K

�1

r �KrK
þ
3 ðx1Þ; x1 2 Lc: ð36Þ
Up to here one finds that the mechanical–electrical boundary condition (29) is decoupled into two equa-

tions: one is (33) and the other is (34). Eq. (34) is related only to the applied mechanical load r1
2 . This

means that our problem has been reduced to an equivalent interface crack problem to that in purely elastic

anisotropic media, and thus the solution of K3ðzÞ can be obtained from (34) in terms of well-established

method. Once K3ðzÞ is available, all mechanical and electric variables can be determined. It should be noted
that the complete solution of K3ðzÞ needs the use of the single-valued condition of displacements such as
Z

Lc

Du;1 dx1 ¼ 0: ð37Þ
Substituting (23) into (37), and using (26) leads to
Z
Lc

½Kþ
3 ðx1Þ � K�

3 ðx1Þ�dx1 ¼ 0: ð38Þ
It can found from (34) and (38) that K3ðzÞ is not related to the applied electric loading. Thus, we here can

conclude that the uniform electric loading at infinity has no influence on the fracture of an infinite piezo-

electric solid with mathematical interface cracks.

When H is real, K is real too. Then, (34) and (36) become
½KrK3ðx1Þ�þ þ ½KrK3ðx1Þ�� ¼ �r1
2 ; ð39Þ

D0
2ðx1Þ ¼ D1

2 � K1�3K
�1
r r1

2 : ð40Þ

The general solution of (39) can be easily written out. It can be shown that all fields behave the reverse

square root singularities, and the stress intensity factor vector kr is the same as that of isotropic materials,

while the intensity factor of electric displacement is kD ¼ K1�3K
�1
r kr. In addition, the electric field inside any

crack is a constant, as shown in (40).

When H is complex and the electric loading is applied solely, we have from (34) that K3ðzÞ ¼ 0. With it,

Eq. (36) leads to D0
2 ¼ D1

2 . This indicates that the stress is zero everywhere. The electric fields in the ma-

terials are equal to the applied ones, while inside the cracks one has E0
2 ¼ D1

2 =e0 ¼ E1
2 ðem=e0Þ, where em and

e0 are the dielectric constants of the material and air, respectively. For most piezoelectric materials, em=e0 is
about 1000 and thus the electric field inside the cracks is about 1000 times higher than the applied electric

field.

WhenH is complex but the combined mechanical–electric loadings are applied at infinity, K3ðzÞ has to be

determined from (34). Upon obtaining K3ðzÞ, the electric field E0
2 ¼ D1

2 =e0 inside the cracks can be given

from (36). It is shown from (36) that E0
2 may be singular and oscillatory near the tip of cracks, since K1�3K

�1
r

is not real in general. Below we place our stress on this general case.

For this case, let
Q�1K�1
r KrQ ¼ hh�e�2pidaii; ð41Þ
where hh ii indicates the diagonal matrix in which each component is varied according to the Greek index a,
Q is the eigenvector matrix and da is a complex number:
da ¼ � 1

2
þ iea:
The ea can be determined by (Ting, 1996)
k � e�2pidaI� K�1
r Krk ¼ 0;
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that is
kKr � e2peaKrk ¼ 0;
which has the solution in the form of (Ting, 1996)
ea ¼ ðe;�e; 0Þ; ð42Þ
where
e ¼ 1

p
tan�1 b ¼ 1

2p
lnþ 1þ b

1� b
; 06 b ¼

�
� 1

2
trðbSSÞ2�1=2; bSS ¼ D�1W; D� iW ¼ Kr:
Using (41), (34) can be decoupled and the general solution of K3ðzÞ can be obtained. Omitting some details

we directly give the final result as
K3ðzÞ ¼ �Q 1� XaðzÞX�1
a ð1Þ

1þ e2pea

� 	� 	
Q�1K�1

r r1
2 þ XaðzÞ

1þ e2pea

� 	� 	
PN�1ðzÞ; ð43Þ
where
PN�1ðzÞ ¼ cN�1zN�1 þ � � � c0; ð44Þ

XaðzÞ ¼
YN
n¼1

ðz� anÞ�1=2�ieaðz� bnÞ�1=2þiea ; ð45Þ

X�1
a ð1Þ ¼

YN
n¼1

z
�

� ðan þ bnÞ þ 2ieaðan � bnÞ
2

�
: ð46Þ
The coefficients cn involved in (44) can be determined by (38).

The stress intensity factor vector can be defined as (Wu, 1990)
kr ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
½KrQ�hhr�ieaii½KrQ��1rs

2ðx1Þ; ð47Þ
where r means the distance from the crack tip; rs
2ðx1Þ stands for the singular principle part of generalized

stress vector r2ðx1Þ ahead of the crack tip.

Ahead of the crack tips, it can be shown that
½KrQ��1rs
2ðx1Þ ¼ hhXaðx1ÞX�1

a ð1Þii½KrQ��1r1
2 þ hhXaðx1ÞiiPN�1ðx1Þ; x1 2 Lb: ð48Þ
Inserting (48) into (47) results in the general expression of stress intensity factors as
kr ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
½KrQ�hhr�ieaii½hhXaðx1ÞX�1

a ð1Þii½KrQ��1r1
2 þ hhXaðx1ÞiiPN�1ðx1Þ�: ð49Þ
It is found from (42) and (49) that the structure of singular fields near the crack tip in a piezoelectric

bimaterial system is the same as that in a traditional anisotropic bimaterials. However, this point was
overlooked in an earlier work (Gao and Wang, 2000).
4. Solution of infinite collinear periodic cracks

For the case of infinite number of collinear periodical interface cracks with equal length 2a, as shown in

Fig. 2, the location of crack tips is specified by



Fig. 2. Periodic interfacial cracks in piezoelectric bimaterials.
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an ¼ 2nb� a; bn ¼ 2nbþ a ðn ¼ �1; . . . ; 0; . . . ;þ1Þ: ð50Þ
Inserting (50) and (45) into (46) results in
XaðzÞ ¼
Yþ1

n¼�1
½ðz� 2nbÞ þ a��1=2�iea ½ðz� 2nbÞ � a��1=2þiea ; ð51Þ

X�1
a ð1Þ ¼

Yþ1

n¼�1
½z� 2nbþ 2iaea�; PN�1ðzÞ ¼ 0: ð52Þ
Using the identity
sinpt ¼ pt
Y1
n¼1

1

�
� t2

n2

�
;

it can be shown that (Boniface and Banks-Sills, 2002)
X�1
a ð1ÞXaðzÞ ¼

sin pðzþ2iaeaÞ
2b

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin pðzþaÞ

2b

h i
sin pðz�aÞ

2b

h ir sin pðz�aÞ
2b

h i
sin pðzþaÞ

2b

h i
2
4

3
5

iea

: ð53Þ
Note
sin
pðz� aÞ

2b

� �
¼ sin

pz
2b

cos
pa
2b

� cos
pz
2b

sin
pa
2b

:

Then, one can rewrite (53) as
X�1
a ð1ÞXaðzÞ ¼

sin p
2b ðzþ 2iaeaÞ

� �
sec pa

2b sec
pz
2bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tg2 pz
2b � tg2 pa

2b

q tg pz
2b � tg pa

2b

tg pz
2b þ tg pa

2b

� �iea
: ð54Þ
Substituting (51) and (52) into (43) can give the complex potential as
K3ðzÞ ¼ �Q 1� XaðzÞX�1
a ð1Þ

1þ e2pea

� 	� 	
Q�1K�1

r r1
2 : ð55Þ
Correspondingly, the stress intensity factor is
kr ¼
ffiffiffiffiffiffi
pa

p
½KrQ�hhð2aÞ�ieaxaii½KrQ��1r1

2 ; ð56Þ
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where
xa ¼ sec
pa
2b

sin
pa
2b

ð1
h

þ 2ieaÞ
i pa

2b

� �iea�1=2

tg
pa
2b

� ��iea�1=2

: ð57Þ
5. Numerical example: for the case of a single crack

As an example, consider a crack located in ½�a;þa�, as shown in Fig. 3. In this case, we have
XaðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p z� a

zþ a

� �iea

; X�1
a ð1Þ ¼ zþ 2iaea; P0ðzÞ ¼ 0: ð58Þ
The complex potential can be determined from (43) such that
K3ðzÞ ¼ �Q 1� XaðzÞðzþ 2iaeaÞ
1þ e2pea

� 	� 	
Q�1K�1

r r1
2 : ð59Þ
Substituting (58) into (49) yields the stress intensity factor vector as
kr ¼
ffiffiffiffiffiffi
pa

p
½KrQ�hhð2aÞ�ieað1þ 2ieaÞii½KrQ��1r1

2 : ð60Þ
On the other hand, if b ! 1 in (57), one has
xa ¼ 1� pa
2b

ð1þ 2ieaÞ
pa
2b

� ��1=2 pa
2b

� ��1=2

;

¼ 1þ 2iea:

ð61Þ
Inserting (61) into (56) one can reach (60) again.

To obtain the crack opening Dumðx1Þ, we have from (23) and (25) that
Dumðx1Þ ¼ Kþ
3 ðx1Þ � K�

3 ðx1Þ; ð62Þ
and then inserting (59) into (62) and using X�
a ¼ �e�2peaXþ

a on crack faces, we obtain
iDum;1ðx1Þ ¼ Qhhe�2peaXþ
a ðx1Þðx1 þ 2iaeaÞiiQ�1K�1

r r1
2 ; �a < x1 < a; ð63Þ
Fig. 3. An interfacial crack in piezoelectric bimaterials.
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namely
Dum;1ðx1Þ ¼ Im Qhhe�2peaXþ
a ðx1Þðx1

�
þ 2iaeaÞiiQ�1K�1

r

�
r1
2 ; �a < x1 < a: ð64Þ
Taking the integration of (64) with respect to x1 and noting DumðaÞ ¼ 0, one can obtain (Ting, 1996)
Dumðx1Þ ¼ Im Qhhe�2peaiivþ
a ðx1ÞQ

�1K�1
r

� �
r1
2 ; �a < x1 < a; ð65Þ
where
vþ
a ðx1Þ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
e�peaeieaX ; X ¼ ln

x1 � a
x1 þ a

����
����; �a < x1 < a:
Eq. (65) can be further reduced to
Dumðx1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
Re ½QhheieaX iihhe�peaiiQ�1K�1

r �r1
2 ; �a < x1 < a: ð66Þ
which shows that the displacement is oscillatory near the crack tip.

On the other hand, substituting (59) into (36) results in the expression of the electric displacement inside

the crack as
D0
2ðx1Þ ¼ D1

2 þ D0
2rðx1Þ; ð67Þ
where D0
2rðx1Þ is the electric displacement induced by the applied mechanical loading, and it is a function of

position along the crack line such that
D0
2rðx1Þ ¼ �½K13K

�1

r �r1
2 � ½K13K

�1
r � K13K

�1

r �Q 1

1þ e2pea

� 	� 	
Q�1K�1

r r1
2

þ ½K13K
�1
r � K13K

�1

r �Q Xþ
a ðx1Þðx1 þ 2iaeaÞ

1þ e2pea

� 	� 	
Q�1K�1

r r1
2 : ð68Þ
It can be found from (67) and (68) that the applied electric loading induces a constant electric field inside

the crack, while the applied mechanical loading produces a singular and oscillatory electric field near the

crack tip. This means that the singularity of electric fields near the crack tip is only characterized by the

applied mechanical loading.

In general, the material constants involved in (3) have the orders in magnitude as follows:
cijkl ¼ c0ijkl � 1010 N=m2; ekij ¼ e0kij � 100 C=m2; eij ¼ e0ij � 10�10 C=Vm; ð69Þ
where c0ijkl, e
0
kij and e0ij are dimensionless constants which are about the same in order of magnitude.

Substituting (69) into (3) gives
rij ¼ c0ijklckl � 1010 N=m2 � e0kijEk � 100 C=m2; Dk ¼ e0kijcij � 100 C=m2 þ e0klEl � 10�10 C=Vm ð70Þ
Let
ckl � 1010 ¼ c0kl; Ek � 100 C=m2 ¼ E0
k N=m2; rij ¼ r0

ij N=m2; Dk ¼ D0
k � 10�10 C=m2; ð71Þ
Then, (70) becomes
r0
ij ¼ c0ijklc

0
kl � e0kijE

0
k ; D0

k ¼ e0kijc
0
ij þ e0klE

0
l : ð72Þ
In the following numerical calculation, we consider a transversely isotropic piezoelectric material with the

poling direction being parallel to the x2-axis. In this case, according to the constitutive question (72), the
elements in the three matrices in (6) can be inputted by c0ij, e

0
ij and e0ij, respectively (here we used Voigt�s

notation), and moreover these matrixes can be explicitly expressed as
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W0 ¼

c011 0 0 0

0 c044 0 e015
0 0

c0
11
�c0

12

2
0

0 e015 0 �e011

2
664

3
775; R0 ¼

0 c013 0 e031
c044 0 0 0
0 0 0 0

e015 0 0 0

2
664

3
775; T0 ¼

c044 0 0 0

0 c033 0 e033
0 0 c044 0

0 e033 0 �e033

2
664

3
775: ð73Þ
Based on (73), one can obtain highly exact numerical results, since the elements involved in these matrices

have about the same orders of magnitude. However, it should be noted that the obtained strain (or dis-
placement) and electric displacement are c0 and D0, while the physical c and D are given by the replacements

of (71).

Below we use the piezoelectric ceramics PZT-4 (located on the upper half-space) and PZT-5H (located

on the lower upper half-space) as the model materials for our numerical calculation. The uniform far-fields

r01
22 and D01

2 are applied. The properties of PZT-4 are
c011 ¼ 13:90; c012 ¼ 7:78; c013 ¼ 7:74;

c033 ¼ 11:30; c044 ¼ 2:56;

e031 ¼ �6:98; e033 ¼ 13:84; e015 ¼ 13:44;

e011 ¼ 60:00; e033 ¼ 54:70
and the properties of PZT-5H are
c011 ¼ 12:60; c012 ¼ 5:50; c13 ¼ 5:30;

c033 ¼ 11:70; c044 ¼ 3:53;

e031 ¼ �6:50; e033 ¼ 23:30; e015 ¼ 17:00;

e011 ¼ 151:00; e033 ¼ 130:00:
Using commercial software Matlab, we have from (68) that
D0
2rðx1Þ ¼ �2:44r01

22 þ 0:293ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2�

p Im ½ðx� þ 2ieÞ-ðx�Þ�r01
22 ; ð74Þ
where
x� ¼
x1
a
; ðjx1j < aÞ; e � 0:02; -ðx�Þ ¼

1� x�
1þ x�

� �ie

:

For the special case of a homogeneous material (PZT-4), the electric field inside the crack is described by
D0
2 ¼ D01

2 � 2:264r01
22 : ð75Þ
The variation of the electric displacement D0
2rðx1Þ along the crack line is plotted in Fig. 4 where the data

points are taken within a range x1=a ¼ 0; . . . ; 0:999. In the range, no oscillatory behaviour is visible. As

indicated by the analytical result (68), the electric field E0
2r ¼ D0

2r=e0 induced by the applied mechanical

loading inside the crack is singular near the tip of an interface crack. However, for a crack in a homo-

geneous material, Eq. (75) shows that E0
2 is a constant. In general, the electric field inside the crack consists

of two parts: one is E0
2e induced by the applied electric field, and the other E0

2r induced by the applied
mechanical loading. Since the sign of E0

2r is opposite to that of E0
2e, the sum electric field is equal to

E0
2 ¼ E0

2e � E0
2r. This means that a proper ratio of the applied electric loading to the applied mechanical



0.2 0.4 0.6 0.8 1

-2.65

-2.55

-2.5

-2.45

Fig. 4. The electric displacement induced by the mechanical load r01
22 .
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loading may lead to a zero electric field inside the crack. For a homogeneous material with a crack, we can

show that the ratio is
D1
2

r1
22

¼ H42

�H44

: ð76Þ
In fact, (76) gives the loading condition under which the commonly used impermeable crack model is valid.
6. Conclusions

This work considers the problem of permeable interface cracks in piezoelectric bimaterials based on the

Stroh formalism. The considered problem is reduced into an equivalent interface crack problem in purely
elastic anisotropic media. This makes it easy to extend the available results concerning interface cracks in

traditional anisotropic materials to the corresponding cases of piezoelectric media. The solution of periodic

collinear crack is at the first time derived in explicit and closed form. It is found that the electric field inside

the cracks is very complex and in general singular near the crack tip. Under such high local electric field, it

is believed that partial discharge may occur, accompanying with the formation of initiation electrical tree

channels (Dissado and Fothergill, 1992). This process may lead partial material near the crack tip to be

electrically broken down (Zhang and Gao, 2003), and therefore the electrical non-linearity will dominate to

the fracture behaviour of piezoelectric materials. Thus, it is necessary to develop an electrical non-linearity
model for the simulation of interface fracture of piezoelectric materials. This is left to future work.
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